
CSE 8B: Introduction to Programming and
Computational Problem Solving - 2

Assignment 5
Objects and Classes in Java

Due Date: Wednesday, May 17, 11:59 PM

Welcome back! Be sure to start this assignment as EARLY as possible! You got this!

Learning goals:
● Implement classes with getters and setters.
● Write unit tests using objects and instance methods.

Your grade will be determined by your most recent submission. If you submit to
Gradescope after the deadline, it will be marked late and the late penalty will apply
regardless of whether you had past submissions before the deadline.

If your code does not compile on Gradescope, you will receive an automatic zero on the
assignment.

Coding Style (10 points)
For this programming assignment, we will be enforcing the CSE 8B Coding Style
Guidelines. These guidelines can also be found on Canvas. Please ensure to have
COMPLETE file headers, class headers, and method headers, to use descriptive variable
names and proper indentation, and to avoid using magic numbers.

Part 0: Getting started with the starter code (0 points)

1. If using a personal computer, then ensure your Java software development environment
does not have any issues. If there are any issues, then review Assignment 1, or come to
the office/lab hours before you start Assignment 5.

2. First, navigate to the cse8b folder you created in Assignment 1 and create a new folder
named assignment5

3. Download the starter code. You can download the starter code from Piazza →
Resources → Homework → assignment5.zip. The starter code contains four files:
Assignment5.java, MyArrayList.java, FifoList.java, and Student.java. Place
the starter code within the assignment5 folder you just created

https://cseweb.ucsd.edu/classes/sp23/cse8B-a/styleguide.html
https://cseweb.ucsd.edu/classes/sp23/cse8B-a/styleguide.html


4. Compile the starter code within the assignment5 folder. You can compile all files using
the single command javac *.java and you should get a compiler error saying that
methods in either MyArrayList.java, FifoList.java or Student.java are missing
return statements and have not been implemented yet. For example:

5. The objective of this assignment is to get the MyArrayList, FifoList and Student
classes working by implementing the class methods in these classes and testing them.

Part 1: Implement Student Class (30 points)

Overview
In this part of the assignment, you will implement a very minimalistic Student class that
represents properties of a typical college student.

WARNING: you must NOT change any data fields or method signatures in the starter code. As such, please observe
the starter code and read the instructions below to make sure you understand what each field means before you start
to implement.

The Student Class
In Student.java, you will be implementing 2 constructors, 5 instance getter methods, 5
instance setter methods, and 2 instance methods. This class is a POJO (Plain Old Java
Object) class without any great functionality of its own but acts as a template to model a
‘Student.’

Each Student object, which is an instance of the Student class, contains the following fields
(all are provided in the starter code ; do not change any of these):

1. private String name: the name of the student
2. private String college: the name of the college the student attends
3. private double currentGpa: the student’s current gpa
4. private int[] weeklyHoursOfSleep: an int array of length 7 that stores the number

of hours the student slept on each day last week. Index 0 being Sunday, index 1 being
Monday, and so forth.

5. private boolean isTired: a boolean that denotes whether the student is currently
tired or not



6. private ArrayList<Student> friends: an ArrayList of other Students that are
this student’s friends

7. private ArrayList<Double> testScores an ArrayList of Doubles that represent
this student’s test scores.

Notice how each member field is declared private. This means that the member is only
visible within the class, not from any other class. In other words, you will need to use accessors
(i.e., getter methods) and mutators (i.e., setter methods) to access and modify, respectively,
these private members. You must also use the this keyword to access member variables
hidden by local variables.
The Student class contains the following member methods:

1. public Student()

This is the no-arg constructor of the Student class. This constructor needs to set the
name, college, currentGpa, weeklyHoursOfSleep, and isTired member variables
according to what is shown below:

● name must be set to null

● college must be set to null

● currentGpa must be set to 0.0

● weeklyHoursOfSleep must be an array of length 7 that contains 7 zeros, that is
{0,0,0,0,0,0,0}

● isTired must be set to false

● friends must be set an empty ArrayList<Student> that stores Students

● testScores must be set to an empty ArrayList<Double> that stores Doubles

2. public Student(String name, String college, double currentGpa, int[]

weeklyHoursOfSleep, boolean isTired, ArrayList<Student> friends,

ArrayList<Double> testScores)

This is another constructor of the Student class. This constructor needs to set the name,
college, currentGpa, weeklyHoursOfSleep, and isTired member variables using the
constructor parameters. For weeklyHoursOfSleep, you must perform a copy of the
array referred to by the constructor parameter array reference variable to the array
referred to by the instance array reference variable. This means that you cannot simply
set the private weeklyHoursOfSleep data field to refer to the same array being
referred to by the constructor parameter. Instead, you must copy the elements of the
array it refers to into the array referred to by the instance variable. The same is true for
friends and testScores. You must iterate over the friends and testScores that
were passed in, and add every element to this student’s friend and testScores.

You can assume that weeklyHoursOfSleep, friends, and testScores will always be
non null.

https://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html


Remember, you must use the this keyword to access member variables hidden by local
variables.

3. Six getters/accessors -
a. public String getName()

b. public String getCollege()

c. public double getCurrentGpa()

d. public int[] getWeeklyHoursOfSleep()

i. This getter method is special in that it must return a new integer array that
stores the same integers referenced to by the instance variable
weeklyHoursOfSleep. In other words, do not simply return the same
instance reference variable.

e. public boolean getIsTired()

f. public ArrayList<Student> getFriends()

i. This getter method is special in that it must return a new
ArrayList<Student> that stores the exact same Student references
that are currently stored in friends. In other words, do not simply return
the friends reference. Make a new ArrayList, copy all Student
references over to the new ArrayList and return that.

Each getter method must simply return the corresponding private data field of the Student

object, except for getWeeklyHoursOfSleep and getFriends, as described above.

4. Five setters/mutators -
a. public void setName(String name)

b. public void setCollege(String college)

c. public void setCurrentGpa(double currentGpa)

d. public void setWeeklyHoursOfSleep(int[] weeklyHoursOfSleep)

e. public void setIsTired(boolean isTired)

Each setter method must simply set the corresponding instance variable to the one provided as
an argument to the method. Except, public void setWeeklyHoursOfSleep() must perform a
copy of the array referred to by the method parameter array reference variable to the array
referred to by the instance array reference variable. This means that you cannot simply set the
private weeklyHoursOfSleep data field to refer to the same array being referred to by the
method parameter. Instead, you must copy the elements of the array it refers to into the array
referred to by the instance variable. Again, remember you must use the this keyword to
access member variables hidden by local variables.

5. public String dayOfLeastSleep()

This method must return a string which is either "Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday", or "Saturday". It returns whichever day the student

https://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html
https://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html


has had the least sleep on. Note the starter code provides constants for the days of the week.
You are encouraged to use these to remain consistent.

For example, if the weeklyHoursOfSleep data field is {7, 9, 3, 10, 12, 3, 13}, then you
would return "Tuesday". This is because 3 hours is the lowest amount the student slept in the
week and remember that index 0 corresponds to Sunday, index 1 corresponds to Monday, and
so forth. Important: If there are ties, return the first day of the week that the least hours of sleep
occurred (minimum index). In this case, because 3 is the least and occurred twice (Tuesday and
Friday), you would return the earliest day of the week which is Tuesday.

6. public int totalHoursSlept()

This method must return the total hours the student slept for the week.

7. public void makeFriend(Student friend)

This method adds friend to the end of this student’s friends ArrayList. You do not need to
make a deep copy of the friend object that was passed in. Just add the reference that was
passed in to the ArrayList.

8. public void takeTest()

This method must add a random Double from [0, 100] to testScores of this student. A random
Double means that the Double chosen must be completely random in the range [0, 100] (every
single number must have an equal chance being chosen). If you choose numbers in a
non-random way, you might fail the Gradescope autograder. Note that we are using Doubles so
the new test score could be a decimal. Math.random() may be useful here.

9. public double averageTestScore()

This method must return the average of all test scores currently in the student’s testScores

ArrayList. You must use floating point division. If the student currently has zero test scores
(have not taken any tests), then you must return 0.0.

The methods that are provided in the starter code MUST return the correct output (if any) as
that is how the Gradescope autograder will test your code.

Part 2: Implement MyArrayList Class (30 points)
In this part of the assignment, you will implement MyArrayList which is a dynamic array that
can expand in length when the capacity is being reached. We will dive into more details later on.



At a high level, you worked with arrays in Java in the previous weeks of this class which could
not change lengths once you created it. As you may know, you had to specify the length of the
array upon declaration and the length remains fixed. If you create an array of length 10 and fill
the array with 10 elements, there is no way to add an additional element to the array without
creating a new one from scratch. MyArrayList allows the user to store items just like an array
but also includes many operations that are not included with a simple array including expanding
its capacity as needed.

WARNING: you must NOT change any data fields or method signatures in the starter code. As such, please observe
the starter code and read the instructions below to make sure you understand what each field means before you start
to implement.

In MyArrayList.java, you will be implementing 1 constructor and 7 instance methods.

A MyArrayList object contains the following fields:
1. private int[] data: the “backing array” that is used to store the data of

MyArrayList. It is called a “backing array” because under the hood (not exposed to the
user of your class) MyArrayList is itself actually implemented with an array.

2. private int size: the number of integers currently in the MyArrayList

One static class variable are also provided and are used when printing out an error when it
occurs:

1. private static final String INDEX_OUT_OF_BOUNDS: printed when the user tries to
get, insert, remove, or popBack in invalid ways (more on that below).

Notice how each member field is declared private. This means the member is only visible
within the class, not from any other class. You must also use the this keyword to access
member variables hidden by local variables.

You are free to declare any additional instance or static member variables as per your
convenience. However, if you do so, you must declare them as private.

The MyArrayList class must contain the following member methods. Please read through
every single method description before implementing the individual methods as some may
depend on others:

1. public MyArrayList()

The no-arg constructor for the MyArrayList class, which will initialize data to an integer
array of length 10 and also size to 0.

2. public void add(int element)

A method to add an element to the end of the MyArrayList. This method must never fail
so it always increases the size by 1. If adding the element would make the size of the
MyArrayList to be greater than or equal to half the capacity of data (data.length /

https://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html


2), then you must create a new array that is double the length of data, copy all the
elements over and set the new array created as data. Examples will make this clear.

Examples:
Initially, data starts off as {0, 0, 0, 0, 0, 0, 0, 0, 0, 0} with size = 0

myArrayList.add(10) →{10, 0, 0, 0, 0, 0, 0, 0, 0, 0} with size = 1

myArrayList.add(20) →{10, 20, 0, 0, 0, 0, 0, 0, 0, 0} with size = 2

myArrayList.add(30) →{10, 20, 30, 0, 0, 0, 0, 0, 0, 0} with size = 3

myArrayList.add(40) →{10, 20, 30, 40, 0, 0, 0, 0, 0, 0} with size = 4

myArrayList.add(50) →{10, 20, 30, 40, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0} with size = 5

3. public int get(int index)

A method to get the element at the specified index. If the user tries to get an element
with an index less than 0 or tries to get an element that does not exist in the
MyArrayList, you must print out the error message and return -1. Otherwise, return the
element at the specified index of the MyArrayList. Examples will make this clear.

Examples:

Imagine the user has done some adding and the state of the backing array is {10, 20,

30, 40, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} with size = 6

(which means they added a zero in the end).

myArrayList.get(-1) → print out INDEX_OUT_OF_BOUNDS on an new line and return
-1

myArrayList.get(1) → 20

myArrayList.get(3) → 40

myArrayList.get(5) → 0

myArrayList.get(6) → print out INDEX_OUT_OF_BOUNDS on an new line and return -1

4. public void insert(int element, int index)

A method that inserts the specified element at the corresponding index with the elements
to the right of the index shifted to the right by 1. If the index is less than 0 or if the
index is greater than the current size (number of elements) of the MyArrayList, then
you must print out the error message and return. Otherwise, insert the element at the
specific index and increment size by 1. If inserting this element would cause the
number of elements to be greater than or equal to half the capacity of data
(data.length / 2), then you must create a new array that is double the length of data,
copy all the elements over and set the new array created as data. Examples will make
this clear.



Examples:
Imagine the user has done some adding and the state of the backing array is {10, 20,

30, 0, 0, 0, 0, 0, 0, 0} with size = 3

myArrayList.insert(100, 1) →{10, 100, 20, 30, 0, 0, 0, 0, 0, 0}

myArrayList.insert(1, 0) → {1, 10, 100, 20, 30, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0}

5. public int remove(int index)

A method that removes the element specified at the particular index and returns the
removed element. If the user tries to remove with an index less than 0 or an element
that does not exist in the MyArrayList, then you must print out INDEX_OUT_OF_BOUNDS
on a new line and return -1. Otherwise, remove elements specified at index and shift all
elements to the right of index to the left by 1 and decrement size by 1. Examples will
make this clear.

Imagine the user has done some adding and the state of the backing array is {10, 20,

30, 0, 0, 0, 0, 0, 0, 0} with size = 3

myArrayList.remove(1) →{10, 30, 0, 0, 0, 0, 0, 0, 0, 0}

myArrayList.remove(2) →print out INDEX_OUT_OF_BOUNDS on a new line and return
-1. This is because there are only two elements left in MyArrayList (10 and 30). There
is no element at index 2 to be removed.

6. public int popBack()

A method that removes the element at the end of the MyArrayList. If there is no
element to remove, then print out INDEX_OUT_OF_BOUNDS on a new line and return -1.
Otherwise, you must remove the last element from MyArrayList, decrement the size

by 1, and return the removed element. Examples will make this clear.

Imagine the user has done some adding and the state of the backing array is {10, 20,

30, 40, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} with size = 6

myArrayList.popBack() →{10, 20, 30, 40, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0}

myArrayList.popBack() →{10, 20, 30, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0}

myArrayList.popBack() →{10, 20, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0}



7. public int getCapacity()

This must simply return the capacity of the MyArrayList, (the length of the backing array
that is used to implement your dynamic array list).

Imagine the user has done some adding and the state of the backing array is {10, 20,

30, 40, 0, 0, 0, 0, 0, 0} with size = 4

myArrayList.getCapacity() → 10

myArrayList.add(10) → {10, 20, 30, 40, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0}

myArrayList.getCapacity() → 20

8. public int getSize()

This must simply return the number of elements in the MyArrayList. NOTE that this is
different from the capacity, which is defined above. The capacity of MyArrayList is how
much the backing array is able to hold while the size of the MyArrayList is the number
of elements that currently exists which was added by the user.

Imagine the user has done some adding and the state of the backing array is {10, 20,

30, 40, 0, 0, 0, 0, 0, 0} with size = 4

myArrayList.getSize() → 4

myArrayList.add(10) → {10, 20, 30, 40, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0}

myArrayList.getSize() → 5

myArrayList.getCapacity() → 20

The methods that are provided in the starter code MUST return the correct output (if any) as
that is how the Gradescope autograder will test your code.

Part 3: Implement FifoList Class (20 points)

The FifoList Class
In this part of the assignment, you will implement a “first in, first out” list. A FifoList is a data
structure that maintains its elements in First-In-First-Out (FIFO) order. This means an element is
earlier in the data structure's order if it was added before other elements were added. This is
described below:

Creating FifoList of maxSize 5 and adding 2, then adding 7, and then adding 4.



Notice the add operation adds items to the back of the FIFO. Adding 5 to the FifoList yields

The peek operation returns the front element from the FIFO without deleting the element from
the FIFO. Since FifoList maintains elements in FIFO order, the front element of this FIFO is
2. Hence, the peek operation returns 2.

The delete operation deletes the front element from the FIFO. Calling the delete operation on
this FifoList yields

A simple way to think about how a FIFO list works is that it represents the concept of standing in
line. Whoever gets to the line first will be served first. Just like whatever gets added to the FIFO
list first will be deleted or looked at first.



Please note that the figures above are only one representation of the array that is used to
construct the first-in-first-out list. Your implementation may differ and as long as your methods
(as described below) return the correct values; it does not matter how the internals of your
FifoList works.

WARNING: you must NOT change any data fields or method signatures in the starter code. As such, please observe
the starter code and read the instructions below to make sure you understand what each field means before you start
to implement.

In FifoList.java, you will be implementing 2 constructors and 4 instance methods.

A FifoList object contains the following fields:
3. private int maxSize: the maximum number of integers the FifoList can store
4. private int currentSize: the number of integers currently in the FifoList

5. private int[] array: an array of length maxSize that stores the integers in the
FifoList

Two static class variables are also provided and are used when printing out an error when it
occurs:

2. private static final String EMPTY_ERROR: printed when the user tries to peek()

or delete() an empty FifoList

3. private static final String MAX_SIZE_ERROR: printed when the user tries to
add() an element to a FifoList that already has a maxSize amount of elements.

Notice how each member field is declared private. This means the member is only visible
within the class, not from any other class. You must also use the this keyword to access
member variables hidden by local variables.

You are free to declare any additional instance or static member variables as per your
convenience. However, if you do so, you must declare them as private.

The FifoList class must contain the following member methods:

9. public FifoList()

The no-arg constructor for the FifoList class, which will initialize maxSize to 0,
currentSize to 0, and array to null.

10. public FifoList(int maxSize)

This constructor for the FifoList class takes the input parameter maxSize to initialize
the maximum size of the array. For example, creating an object as new FifoList(5)

must create a FifoList whose maximum size is 5. If the parameter passed is invalid

https://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html


(i.e., a negative number) then initialize your class variables maxSize to 0, currentSize
to 0, and array to null.

11. public void add(int element)

A method to add an element to the back of the FifoList. If the FifoList is already full
or FifoList is null, then this method must print the contents of the MAX_SIZE_ERROR

string and return.

12. public int delete()

A method to delete the front element. Since elements in FifoList are maintained in
FIFO order, this method must delete the front element within FifoList and return the
element just deleted. If FifoList is empty or FifoList is null, then this method must
print the contents of EMPTY_ERROR and return -1.

13. public int peek()

A method that returns the front element without deleting it. Since elements in FifoList

are maintained in FIFO order, this method must return the front element of the
FifoList. If FifoList is empty or FifoList is null, then this method must print the
contents of EMPTY_ERROR and return -1.

14. public int size()

A method that returns the current size of the FifoList based on how many elements
are currently in the FifoList. For example, If the user creates a new FifoList with a
maxSize of 5, performs three add() operations followed by one delete() operation,
then this method must return 2.

The methods that are provided in the starter code MUST return the correct output (if any) as
that is how the Gradescope autograder will test your code.

Part 3: Compile, Run, and UnitTest Your Code (10 points)
Just like in previous assignments, in this part of the assignment, you need to implement
your own test cases in the method called unitTests in the Assignment5.java class.

In the starter code, two test cases for Student, one simple test case for MyArrayList, and one
simple test case for FifoList have already been implemented for you. You can regard each of
these as an example to implement other cases though you will need to test more to get full
credit. To get full credit on this section, you must follow the instructions below.

For Student, you must create three additional test cases that test either the getter/setter
methods, constructors, getDayOfLeastSleep, makeFriend, takeTest, averageTestScore, or
a combination of these.



For MyArrayList, you must create three additional test cases. Each test case must have all the
following:

1. Invoke the constructor
2. invoke each of the 7 instance methods at least once

For FifoList, you must create three additional test cases. Each test case must have all the
following:

1. Invoke either one of both of the constructors
2. have at least 3 add operations
3. have at least 3 delete operations
4. test either the peek() or currentSize() method

You cannot make all your test cases follow the same structure. For example, you cannot make
all your test cases add three elements then delete three elements (for MyArrayList/FifoList)
Your best option is to test a random combination of the methods to see if it gives you the right
output as that is what the autograder will do.

Please note that points for unit tests are “all or nothing.” For example, if you only create two
additional tests for Student rather than three, you will get zero points on the Student unit test
portion of the assignment. You will not receive partial credit for the two unit tests you created.

Recall, the general approach is to come up with different inputs and manually give the expected
output, then call the method with that input and compare the result with expected output.

You are encouraged to create as many test cases as you think to be necessary to cover all the
edge cases. The unitTests method must return true only when all the test cases are passed;
otherwise, it must return false.

To compare strings by the equality of their characters, you must use the String instance
method equals(). See the given unit tests for examples.

If a test is not passing, try temporarily printing the result of your method(s) and comparing them
to the expected output.

You can compile all the files present in the starter code and run your unit tests from main()

using the following commands: (Make sure you are in the correct directory, else navigate to the
starter code using cd)

> javac *.java

> java Assignment5

The first command javac *.java compiles all the files in the folder with a .java extension,
which is what is required. After the .java files compile successfully and .class files are
generated, run the main() in Assignment5 using java Assignment5.



Submission

You’re almost there! Please follow the instructions below carefully and use the exact
submission format. Because we will use scripts to grade, you may receive a zero if you do
not follow the same submission format.

1. Open Gradescope and login. Then, select this course → Assignment 5.
2. Click the DRAG & DROP section and directly select the required files Student.java,

MyArrayList.java, FifoList.java, and Assignment5.java. Drag & drop is fine.
Please make sure you do not submit a zip, just the three files in one Gradescope
submission. Make sure the names of the files are correct.

3. You can resubmit unlimited times before the due date. Your score will depend on your
final (most recent) submission, even if your former submissions have higher scores.

4. Your submission should look like the below screenshot.


